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Phase chaos in the anisotropic complex Ginzburg-Landau equation

Roland Faller* and Lorenz Kramer
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~Received 5 December 1997!

Of the various interesting solutions found in the two-dimensional complex Ginzburg-Landau equation for
anisotropic systems, the phase-chaotic states show particularly novel features. They exist in a broader param-
eter range than in the isotropic case, and often even broader than in one dimension. They typically represent the
global attractor of the system. There exist two variants of phase chaos: a quasi-one dimensional and a two-
dimensional solution. The transition to defect chaos is of intermittent type.@S1063-651X~98!50306-6#

PACS number~s!: 05.45.1b, 47.54.1r, 47.20.Ky, 42.65.Sf
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The complex Ginzburg-Landau equation~CGLE! plays
the role of a generalized normal form for spatially extend
media in the vicinity of a supercritical Hopf bifurcation in
volving a non-degenerate~oscillatory! mode. It has a wide
range of applications extending from hydrodynamic ins
bilities @1,2# and nonlinear optics@3# to oscillatory chemical
instabilities like the Belousov-Zhabotinsky reaction@4# or
oxidation on catalytic surfaces@5#. For a general review see
e.g.,@6#.

The one-dimensional~1D! and the 2D isotropic case
have been investigated rather well@7–16#. A number of re-
sults have also been obtained in 3D@17,18#. Taking up some
earlier work@19# we recently reported about spirals and o
dered defect chains in the anisotropic complex Ginzbu
Landau equation~ACGLE! @20#

] tA5@11~11 ib1!]x
21~11 ib2!]y

22~11 ic !uAu2#A.
~1!

Here A is the complex amplitude modulating the critic
mode in space and time. The usual reduced units are u
This equation was also studied in the context of defect ch
~DC! @21# and wind-driven Eckmann boundary layers@22#.

Actually the range of applicability of Eq.~1! is consider-
able. The isotropic case, i.e., Eq.~1! with b15b25b, can
essentially be applied only to isotropic systems undergoin
spatially homogeneousHopf bifurcation. A nonzero wave
numberqc leads to traveling or standing waves, as in ma
hydrodynamic instabilities. Then, in systems that are iso
pic in the basic state, one has a continuous degeneracy o
critical modes, which makes a more elaborate descrip
necessary. In the presence of an anisotropy, such as, e.
the well-studied system of electroconvection in liquid cry
tals @2#, this degeneracy is typically lifted and Eq.~1! is
appropriate. Also, of course, anisotropic systems with
qc50 bifurcation, as occur in oscillatory surface reactio
@5#, requireb1Þb2. Taking linear transformations ofx andy
into account the term involving second derivatives is gene
Transforming into a comoving frame a linear group veloc
involving a first space derivative vanishes. In the~common!

*Present address: Max-Planck-Institut fu¨r Polymerforschung, D-
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situation of degeneracy between left- or right-traveli
waves, we assume only one type to survive~which is often
the case!.

The ACGLE has a 2D wave-vector band of plane-wa
solutions A5F3expi(Qx1Py2vt),F2512Q22P2,v5c
1(b12c)Q21(b22c)P2. They are stable against long
wavelength modulations when$112@~11c2!/~11b1c!#%Q2

1$112@(11c2)/(11b2c)#%P2,1 holds~generalized Eck-
haus instability!, while the Newell criterion

11bic.0, i 51,2 ~2!

is satisfied in both directions. From these relations one s
that the stableQ band shrinks to zero as 11b1c→01

@Benjamin-Feir~BF! instability# with a similar behavior of
the P band. Actually, the Eckhaus instability for (Q,P)Þ0
is of the convective type and plane waves can occur ove
limited spatial extension in a larger range@10#.

The bifurcation connected with this instability is supe
critical when one is at the BF limit or sufficiently near to i
i.e., the amplitude of the destabilizing sideband modes a
ally saturates@23#. However, the resulting quasiperiodic s
lutions, as far as they are themselves modulationally sta
have for vanishing (Q,P) a small basin of attraction in the
BF unstable range, and in the studied 1D and isotropic ca
the relevant attractors turn out to be spatiotemporally c
otic. Nevertheless, since the amplitudeuAu saturates to a
value near 1, only the phaseF ~we write A5uAu exp iF) is
dynamically active. In 1D the bifurcation at the BF instab
ity, including slow modulations, is captured by the ce
ebrated Kuramoto-Sivashinsky phase equation~see below!.
It exhibits the so-called phase chaos~PC! ~or phase turbu-
lence!.

PC in the 1D CGLE was studied numerically first by Sa
aguchi@24#, who also studied the breakdown and crosso
to chaos involving phase slips~zeros ofA in spacetime! fur-
ther away from the BF curve. This state is, in analogy to
2D case~see below!, often referred to as defect turbulence
defect chaos~DC! @7#. The resulting phase diagram was stu
ied numerically in detail by Shraimanet al. @25#, who dis-
covered that forubu>1.8 the transition between PC and D
is continuous, whereas it is hysteretic with a bichaotic reg
otherwise~see Fig. 1, dashed-dotted line and region mark
bichaos 1D!. A detailed study with longer simulations an
larger systems was performed by Egolf and Greenside@26#.
R6249 © 1998 The American Physical Society
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A rather exhaustive study in 2D~isotropic caseb15b2)
was presented by Manneville and Chate´ @27#. Here the region
of PC is somewhat smaller than in 1D~see Fig. 1, dashed
line!. Also, the transition is always hysteretic, which may
related to the fact that the zeros ofA now correspond to
topological defects. The breakdown of PC involves t
creation of pairs of defects of opposite polarity which se
rate and loose correlation~‘‘unbind’’ !. Once initiated, the
process is self-sustaining leading to a nucleus and eventu
to fronts that always appear to invade the PC state@27#.
Thus, in the isotropic case, PC is never the globally sta
attractor.

Actually over much of the region where one has PC
global attractor is not DC as such, which appears only tr
siently, but rather a frozen state~vortex glass! with a disor-
dered distribution of defects@9,12,27#. Every second defec
emits a spiral wave of the type well known in the Eckhau
stable range. The emitted waves remain intact over fin
sized cells by convective stabilization. Rotating spirals~time
dependence}exp ivt) exist also in the ACGLE. In spirals
the group velocity, which in plane waves is 2(b12c)q in the
x direction [2(b22c)p in the y direction# is expected to
point outward in all directions. In order to have cohere
wavefronts one needs (b12c)(b22c).0. Our simulations
confirm that spirals are found only under this condition. Al
the expected aspect ratioA(b12c)/(b22c) of the equiphase
lines of spirals is confirmed by the simulations.

Our investigation was motivated in particular by the qu
tion of what happens in the parameter regim
(b12c)(b22c),0 where spirals do not exist, and therefo
also the existence of DC could be questionable. With t
inequality the BF instability~necessary for PC! can only oc-
cur in one direction~we chooseb1c,21, i.e., instability in
the x direction! and the anisotropy is ‘‘strong’’@28#. Since
the ACGLE has the symmetry (b1 ,b2 ,c,A)
→(2b1 ,2b2 ,2c,A* ), we always choseb1.0 ~in compar-
ing with other works we transformed to this convention!, and
thereforeb12c.0.

The quick answer to the above question is actually qu
simple: The system remains in PC ‘‘longer’’ than in the is
tropic case, but eventually it does develop~‘‘anisotropic’’!
DC. Since in DC defects actually hardly emit waves, in co
trast to the situation in the vortex glass, no problem ari
with opposite group velocities. The investigation led to s
prises to be discussed now.

FIG. 1. Phase diagram forb25c.
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We have performed detailed simulations of the ACGLE
systems of sizeL between 100 and 2500 dimensionless un
with discretizationnt'0.1 andnx5L/N between 0.3 and
5, whereN is the number of Fourier modes in each directi
of the pseudospectral algorithm used. We used perio
boundary conditions with initial conditions that imposed
zero phase difference across the system. Hence PC w
nonzero background wavevector as studied recently in
@14# was excluded. The results depend only weakly on
discretization and on system size~for sufficiently large sys-
tems!. Choosingb15b2 the results of@27# could be repro-
duced. Subsequently we changedb2 in the direction ofc.
This always increased the range of PC~i.e., ucu could be
chosen larger!. The limit of PC for the caseb25c is depicted
in Fig. 1. To the left of the shaded region no defects w
observed, to the right of it DC was found. The shaded reg
itself is the parameter range where we found intermitten
~see below!. Note that forb1.2 even the 1D limit of PC
could be exceeded. Since it turns out that for the effect on
the sign ofb22c is, after all, not decisive, we in fact did
many of the studies atb25c(,0). A snapshot of the PC
found there is shown in Fig. 2~a!.

We now come to the qualitative features of anisotro
PC as extracted from our simulations performed in the ra
1<b1<5 andb25c:

~i! PC is the global attractor, i.e., with random initial co
ditions the system ends up in PC after the eventual annih
tion of transient defects. This is in contrast to the isotro
case, where PC is never the global attractor.

~ii ! In the whole investigated range the transition betwe
PC and DC~as b25c is varied! goes through a stage o
intermittency~Fig. 1 shaded region!, which is not found in
the isotropic case. In the intermittent state defect pairs
created in the form of bursts which subsequently annihil
again, keeping the correlation between partners, i.e., de
pairs remain bounded. So in this regime, in spite of the pr
ence of defects, phase coherence persists and the state s
therefore be classified as PC. At a critical value
ucu (5cu) defects start to unbind rather fast, and this sho
be associated with the onset of DC. Recently a transit
between two defect chaotic states in coupled Ginzbu
Landau equations was reported where one also sees thi
binding of pairs@29#.

In PC the spatial average of the amplitudeuAu is very
close to 1; see Fig. 3~a! ~solid line!. One finds a kink at the

FIG. 2. ModulusuAu for b155.0, b25c520.25, and system
sizeL5700~white, uAu51; black,uAu'0.9). ~a! 2D PC~‘‘PCII’’ !,
~b! quasi-1D PC~‘‘PCI’’ !.
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onset of intermittency from where onuAu starts to drop
faster. The limit of existence of PC can here be assigned
ucu slightly below 0.8. Also shown in Fig. 3~a! is the mini-
mum uAumin of uAu ~broken line!. Once uAu falls below
uAu50.6 breakthrough toA50 typically occurs. Figure 3~b!
showsuAumin as a function of time in the intermittent range

~iii ! In addition to the 2D PC discussed up to no
~‘‘PCII’’ ! there exists close to the BF boundary and coex
ent with PCII a strictly quasi-1D PC~‘‘PCI’’ ! with spatial
variations only in the unstablex direction@see Fig. 2~b! for a
snapshot#. It is obtained by initializing the system with a
function A that differs from 1 only by small variations inx.
PCI is only stable against small perturbations in they direc-
tion and easily transforms into PCII~it is metastable!. At its
limit of stability, which for b155.0 is slightly below
ucu50.3(5ub2u), the transformation becomes spontaneo
@30#. Because of CPU time limitations the transition cou
not be studied extensively.

Next we introduce a nonlinear phase equation wh
should yield a simplified description of phase chaos beco
ing exact in the limit 11b1c→02. Using the standard pro
cedure @6# one arrives at the following equation for th
~strongly! anisotropic situation:

] tF52uDxu]x
2F2Dx4]x

4F2gx~]xF!21Dy]y
2F

2gy~]yF!22aF2]xF]x
3F1~]x

2F!2

1
2

b1
~]xF!2]x

2FG ,
~3!

Dx511b1c, Dy511b2c, Dx45b1
2~11c2!,

gx5b12c, gy5b22c, a5b1~11c2!.

The first three terms on the right-hand side of Eq.~3! make
up the 1D Kuramoto-Sivashinski equation. The higher-ord
nonlinear terms proportional toa were included by Sakagu
chi, who showed them to be responsible for the breakdo
of PC, here implied by a blow up of the phase gradient@24#.
Actually the last term in square brackets is formally
higher order than the others, but it could become import
for smallb1. In the stabley direction (Dy.0!) it suffices to
include the two terms shown, as done by Bar in the equa
without the Sakaguchi terms@31#. Actually, in the parameter

FIG. 3. ~a! uAu ~solid line! and uAumin ~broken line! decrease
with growing ub2u5ucu (L5700,b154.0). ~b! time series ofuAumin

for b152.0,b25c520.96.
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range studied by us, the term proportional togy has little
influence~for b25c it vanishes anyhow!.

By rescalingt,x,y, andF one can scale the coefficien
of the linear part and the term proportional togx to 1. Intro-
ducing the time scalet5Dx4 /uDxu2, the length scales be
come l x5ADx4 /uDxu and l y5ADyDx4/uDxu, which is sup-
ported by the simulations of PCII. Note that when the B
boundary is approached, whereDx→0, l y diverges more
rapidly thanl x , so that PCIIappearsmore and more one
dimensional. Neglecting in Eq.~3! the last term in square
brackets the only relevant parameter is the prefactor of

Sakaguchi terms, which becomesâ5auDxu/(Dx4gx).
Comparing PCII obtained from simulations of Eq.~3!

with that of the ACGLE we find satisfactory agreement e
cept near to the breakdown~for not too large values ofb1).
For b152.0 andb25c we find the breakdown of the phas
description atb2520.95, which is in fair agreement with
the value found for the ACGLE. In a detailed study of the 1
case atb153.5 @26# the authors foundc1d520.75 in the
CGLE and20.55 in the Sakaguchi equation, whereas
find c2d520.9 in the ACGLE~with b25c) compared to
20.75 with Eq.~3!. PCI is also found in the phase equatio
and can atb155.0 be maintained stably up to at lea
c520.28. The lowest-order description by Eq.~3! with only
the first four terms on the right-hand side has PCI and P
as coexisting solutions.

How can one understand the existence of PCI? Fo
stable1D solution, i.e., a solution with negative Lyapuno
exponents, the~stable! existence of its quasi-1D analog
clear in the situation of a stabley direction ~this is most
easily seen in the phase equation!. On the other hand, in PC
one has positive Lyapunov exponents for fluctuations t
vary only in the x direction, so there are also positiv
Lyapunov exponents for sufficiently small modulation wa
numberp in the y direction. However, this does not nece
sarily destroy PCI, since the only condition is that fluctu
tions flatten out iny, even though they do not decay. W
have confirmed by extensive simulations of PCI
b155.0,b25c520.26,L5700, andN5256 that small per-
turbations of the formap exp ipy with ap,0.2 ~at p'0.1)
decay asymptotically in a diffusive manner with a phase d
fusion constant aroundDy . Under the same conditions sto
chastic perturbations~uncorrelated on the discretized lattic
in real space! decayed up to an amplitudead,0.01. Actu-
ally, one also expects solutions of Eq.~1! of the form
A5 exp(iPy)B(x,t) with phase-chaoticB to exist. Thus, PCI
presumably represents the center of aP band of phase-
winding solutions.

Finally we point out that the interpretation of the PC
↔ DC transition as a vortex binding-unbinding transitio
probably allows to establish PCII as a thermodynamic ph
that is qualitatively different from DC. In PCII, even if
defect pair is created, it remains bounded and annihila
again ~the unbinding beyondcu is a cooperative phenom
enon!. The question of the conventional forms of PC rep
senting such a state, in contrast to being just a~sometimes
metastable! variant of DC with a very low rate of phase slip
or defect pair creation, has indeed stimulated much of
previous research on PC@25–27#. Actually also PCI, al-
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though it appears to exist only metastably, can presuma
be considered an independent thermodynamic phase bec
it differs in symmetry.

Clearly much remains to be done. On one hand, find
criteria for the occurrence of PCI and methods to calcu
the boundary of existence seems a most interesting prob
On the other hand, a detailed characterization of the P
l,

ev

r,

-
ity

.

ly
use

g
e
m.
II

↔ DC transition appears desirable.

We have benefitted from discussions with I. Aronson,
Neubauer, W. Pesch, and A. Rossberg. Extensive us
high-performance computer facilities at the LRZ, Mu¨nchen
~Cray T90! and the HLRS, Stuttgart~NEC SX4!, as well as
financial support by DFG~Grant No. Kr690/4! are gratefully
acknowledged.
a D

er,

H.

lts

ot
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